Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Zu-Pei Liang, ${ }^{\text {a* }}$ Jian Li, ${ }^{\text {b }}$ Gao-Ning Li, ${ }^{\text {a }}$ Chang-Qing Cao ${ }^{\text {a }}$ and Guang-Jian Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemical Engineering and Technology, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\mathbf{b}}$ Qingdao Huaren Pharmaceutical Co. Ltd, Qingdao 266001, People's Republic of China

Correspondence e-mail:
zupeiliang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.109$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[(Z)-(1-Naphthyl)methylene]benzimidazo[2,1-b]-thiazol-3(2H)-one

The title compound, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, was synthesized by mixing 2,4-dichlorobenzaldehyde, ethyl chloroacetate and tetra-hydropyrimidine-2-thione in ethanol. The dihedral angle between the naphthalene plane and the heterocyclic ring system is $9.3(3)^{\circ}$.

Comment

Dihydroimidazoles are reported to exhibit diverse biological and pharmacological properties. Examples of these include vasodepressor, sympathomimetic, antihistaminic, histaminelike and cholinomimetic activity (Gilman \& Goodman, 2001; Greenhill \& Lue, 1993). Dihydroimidazoles, such as midaglizole, deriglidole and efaroxan, have been found to be potent antihyperglycaemic agents (Bihan et al., 1999). Thus, there has been considerable interest in the chemistry of dihydroimidazole and its derivatives in recent years. In this paper, the structure of the title compound, (I), is reported.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The heterocyclic ring system is essentially planar, with a mean deviation of 0.0067 (3) A. Selected bond lengths and angles are listed in Table 1. Taking account of the different substitution patterns, the geometry of the heterocyclic ring system compares favourably with that in the related compounds (2Z)-2-[(anthracen-9-yl)methylene]-5,6-dihydroimidazo[2,1-b]thia-zol-3(2H)-one (Liang \& Li, 2005) and 6-(4-chlorobenzyl-idene)-2,3-dihydroimidazo[2,1-b]thiazol-5(6H)-one (KarolakWojciechowska \& Kieć-Kononowicz, 1991). The naphthalene ring system is planar to within 0.0135 (3) \AA. The dihedral angle between the naphthalene plane and the heterocyclic ring system is $9.3(3)^{\circ}$.

Experimental

A mixture of benz[4,5]imidazo[2,1-b]thiazol-3-one (0.02 mol) and naphthaldehyde (0.02 mol) was stirred under reflux in $\mathrm{CH}_{3} \mathrm{COONa}$ / $\mathrm{CH}_{3} \mathrm{COOH}$ solution $(40 \mathrm{ml})$ for 90 min . After cooling and filtration, the title compound was recrystallized from acetic acid. A quantity of (I) $(15 \mathrm{mg})$ was dissolved in trichloromethane (20 ml) and the solution kept at room temperature for 7 d . Slow solvent evaporation gave

Received 18 August 2005 Accepted 5 September 2005 Online 7 September 2005
yellow single crystals of (I) suitable for X-ray analysis (m.p. 486$488 \mathrm{~K})$. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-$ 7.71 ($m, 11 \mathrm{H}, \mathrm{ArH}$), 7.42 ($s, 1 \mathrm{H},-\mathrm{CH})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS} \\
& M_{r}=328.38 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=6.8627(16) \AA \\
& b=7.9031(19) \AA \\
& c=27.010(6) \AA \\
& \beta=95.406(4) \AA \\
& V=1458.4(6) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.496 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 894 reflections
$\theta=3.0-25.4^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=90$ (2) K
Plate, yellow
$0.04 \times 0.04 \times 0.01 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.980, T_{\text {max }}=0.998$
8139 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.109$
$S=0.95$
3432 reflections
217 parameters

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Ihe crystal structure of (I), viewed along the a axis.

References

Bihan, G., Rondu, F., Pele, A.-T., Wang, X., Lidy, S., Touboul, E., Lamouri, A., Dive, G., Huet, J., Pfeiffer, B., Renard, P., Guardiola, B.-L., Manechez, D., Penicaud, L., Ktorza, A. \& Godfroid, J.-J. (1999). J. Med. Chem. 42, 15871592.

Bruker (1997). SADABS (Version 2.01), SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Gilman, A. G. \& Goodman, L. S. (2001). The Pharmacological Basis of Therapeutics, 10th ed., edited by A.G. Gilman, L. S. Goodman, J. G. Hardman \& L. E. Limbird, pp. 215-268. New York: Macmillan.
Greenhill, J. \& Lue, P. (1993). Editors. Progress in Medicinal Chemistry, pp. 203-326. New York: Elsevier Science.
Karolak-Wojciechowska, J. \& Kieć-Kononowicz,K. (1991). Acta Cryst. C47, 2371-2374.
Liang, Z. P. \& Li, J. (2005). Acta Cryst. E60, o220-o221.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

